

Justin A. Haegele¹ & Xihe Zhu¹

Old Dominion University

I DEA FUSION

Background

- Health-related fitness knowledge (HRFK) plays an essential role in promoting physical activity among adolescents.¹⁻³
 - Low levels of physical activity engagement may result from a lack of HRFK.²
- As such, the *National Standards & Grade-Level Outcomes for K-12 PE* include "acquisition of the knowledge to achieve and maintain a health-enhancing level of physical activity and fitness" as a primary outcome.⁴
- To improve HRFK in PE classes, effective research-based curricular must be available to physical educators.

Five for Life

Five for Life-Advanced Curriculum

- Introduces training principles.
- Instructs students on the use of behavior logs which allow students to track personal habits and how those habits affect health, performance, and fitness.
- Students design fitness plans based on their individual goals.
- One academic year in duration.

Purpose

The purpose of this analysis was to examine the growth in health-related fitness knowledge during high school years with *Five for Life* curriculum implementation.

Participants

- 9,883 high school students (49.4% female) from 40 high schools in a Mid Atlantic state.
- 15.32 \pm .75 years old (14 to 20), enrolled in 9th to 11th grade.
- Ethnic/racial makeup: 14.59% Asian American, 15.90% Black/African American, 19.01% Latino/Hispanic, 45.74% White/Caucasian, 4.76% other.

Participants

Student level	Frequency	School level	$M \pm SD$	Min	Max
Female/Male	49.4%/50.6%	FARM (%)	27.46 ± 19.59	5.00	65.00
Grade 9	39.5%	PE Student/Faculty	294.95 ± 63.28	204.80	486.20
Grade 10	49.5%	SAP	87.88 ± 6.38	75.75	95.75
Grade 11	11.0%	HRFK score (%)	74.23 ± 8.53	57.54	92.59

Note. FARM (%) = Free And Reduced Meal Percentage; PE = Physical Education; SAP =

School Academic Performance (% of passing state test); HRFK = Health-related fitness

knowledge.

*Only students with at least 2 data points were used in this analysis.

Student Level Variables

- Gender
- Grade
- HRFK

School Level Variables

- Free and reduced meal (FARM)
- Student faculty ration PE (S/F-PE)
- School Academic Performance (SAP)

Student Level Variables

- Gender, grade, and HRFK data collected using the online platform, Welnet[®], where the knowledge test was deployed.
- 11-item HRFK test was designed specifically for the Five for Life Advanced curriculum.
 - Questions were content validated through a panel of curriculum developers.
 - Student performance was based on the percentage of correct Reponses (correct items/total items).

School Level Variables

- FARM, S/F-PE, and SAP were obtained through the school report from the state department of education and school district webpages.
- For SAP, school level passing rates for reading, mathematics, science and social science for the past three years were used.
 - We competed an aggregated average passing rate for each school.

Procedures

- Participants completed the HRFK test online from 2012 to 2016 as they progressed from 9th to 11th grade.
- Age, grade level, school, and date were recorded during test.

Data Analysis

- Three-level hierarchical linear modeling (HLM)⁶ was used to analyze data.
 - Level 1: Grade Level
 - Level 2: Student
 - Level 3: School

Equation 1

$$Y_{tij} = \pi_{0ij} + \pi_{1ij} (Year)_{tij} + e_{tij}$$
 [1]

Equation 2

•
$$\pi_{0ij} = \beta_{00j} + \beta_{01j} (Gender)_{ij} + r_{0ij}$$
 [2a]

•
$$\pi_{1ij} = \beta_{10j} + \beta_{11j} (Gender)_{ij} + r_{1ij}$$
 [2b]

Equation 3

•
$$\beta_{00j} = \gamma_{000} + \gamma_{001} (FARM)_j + \gamma_{002} (SF-PE)_j + \gamma_{003} (SAP)_j + u_{00j}$$
 [3a]

$$\beta_{01j} = \gamma_{010}$$
 [3b]

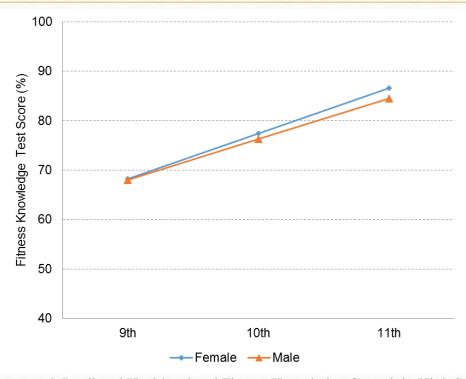
•
$$\beta_{10j} = \gamma_{100} + \gamma_{101} (FARM)_j + \gamma_{102} (SF-PE)_j + \gamma_{103} (SAP)_j + u_{10j}$$
 [3c]

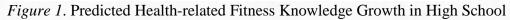
•
$$\beta_{11j} = \gamma_{110}$$
 [3d]

• Overall mean HRFK score across of 74.23 ± 8.53 across three grade levels.

Student level	Frequency	School level	$M \pm SD$	Min	Max
Female/Male	49.4%/50.6%	FARM (%)	27.46 ± 19.59	5.00	65.00
Grade 9	39.5%	PE Student/Faculty	294.95 ± 63.28	204.80	486.20
Grade 10	49.5%	SAP	87.88 ± 6.38	75.75	95.75
Grade 11	11.0%	HRFK score (%)	74.23 ± 8.53	57.54	92.59

- Predicted HRFK score of 68.26 ± 1.32 at 9th grade, holding all other factors constant.
- SAP and S/F-PE were positive predictors, while FARM was a negative predictor of HRFK (however, all were non-significant).
- Males tended to score .25 percentage points lower than females during 9^{th} grade, but differences were non significant (p > .05).


- Predicted student HRFK growth was 9.14 ± 1.40 percent each year, holding other factors constant.
- FARM, SAP, and S/F-PE negatively predicted HRFK growth rate, however not significantly (p>.05).
- Gender significantly predicted HRFK growth rate (p < .05).
 - Males had a significantly lower HRFK growth rate than females from 9th to 11th grade.
 - Yielded a significant performance gap by 11th grade, even though they started almost identically in 9th grade.



Discussion

Major Findings

- This analysis provides preliminary support for the effectiveness for the *Five* for Life curriculum for improving HRFK among high school-aged students.
- High school students using *Five for Life-Advanced* significantly increased their HRFK from 9th to 11th grade.
- Males reported significantly lower knowledge growth rates than females.

Discussion

Limitations

- This study is limited in several important ways:
 - No treatment fidelity procedures were undertaken, thus it is unknown what content from the curriculum was used in each of the classes.
 - No comparison group, therefore unable to determine if changes in HRFK were solely due to curriculum, or if other actors were at play.
 - Data collection procedures, and specifically the submission of scores by physical educators into an online system, opens the door for inaccurate scores to be reported.
- Because of inherent limitations in this study, additional research is needed to further understand the effectiveness of the *Five for Life* curriculum.

Thank you!

The authors wish to thank the school districts and Focused Fitness® for sharing the data for this analysis with us.

Contact Information

Justin A. Haegele, PhD, CAPE

jhaegele@odu.edu

Xihe Zhu, PhD

x2zhu@odu.edu

* This study is in part funded by the Community Health Foundation

References

- 1. Keating, X.D., Harrison, L., Chen, L., Xiang, P., Lambdin, D., Dauenhauer, B., Rotich, W., & Pinero, J.C. (2009). An analysis of research on student health-related fitness knowledge in K-16 physical education program. *Journal of Teaching in Physical Education*, 28, 333-49. doi:10.1123/jtpe.28.3.333
- 2. Demetriou, Y., Sudeck, G., Thiel, A., & Honer, O. (2015). The effects of school-based physical activity interventions on students' health-related fitness knowledge: A systematic review. *Educational Research Review*, 16, 19-40. doi:10.1016/j.edurev.2015.07.002
- 3. Ferkel, R.C., Judge, L.W., Stodden, D.F., & Griffin, K. (2014). Importance of health-related fitness knowledge to increasing physical activity and physical fitness. *The Physical Educator*, 71, 218-233
- 4. Mitchell, S., & Fisette, J. (2016). The Essentials of Teaching Physical Education: Curriculum, Instruction, and Assessment. Human Kinetics: Champaign, IL.
- 5. Thomas, J.R., Nelson, J.K., & Silverman, S.J. (2005). Research Methods in Physical Activity (5th ed.). Human Kinetics: Champaign, IL.
- 6. Raudenbush, S.W., & Bryk, A.S. (2002). Hierarchical linear models: Applications and data analysis methods. Sage: United Kingdom

